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Phase transitions in a model for the formation of herpes simplex ulcers
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The critical properties of a cellular automaton model describing the spreading of infection of the herpes
simplex virus in corneal tissue are investigated through the dynamic Monte Carlo method. The model takes
into account different cell susceptibilities to the viral infection, as suggested by experimental findings. In a
two-dimensional square lattice the sites are associated with two distinct types of cells, namely, permissive and
resistant to the infection. While a permissive cell becomes infected in the presence of a single infected cell in
its neighborhood, a resistant cell needs to be surrounded by atResaktinfected or dead cells in order to
become infected. The infection is followed by the death of the cells resulting in ulcers whose forms may be
dendritic (self-limited clustersor amoeboidpercolating cluste)sdepending on the degree of resistafcef
the resistant cells as well as on the density of permissive cells in the healthy tissue. We show that a phase
transition between these two regimes occurs onlyRer5 and, in addition, that the phase transition is in the
universality class of the ordinary percolation.
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[. INTRODUCTION have been estimated suggesting that their outlines are fractal

One of the most common and intensively studied diseasesbjects[3]. While the dendritic ulcers include branching and
among humans is the herpes simplex vi(HSV) infection.  linear lesions, the geographic ulcers are no longer linear and
Apparently, the unique symbiosis that exists in nature beas they increase in size, their perimeters become less and less
tween humans and the HSV allows the viral particles to redrregular. In addition to its usefulness as a classification tool,
main inactive(latent infection in the cranial nerve ganglia the fractal properties of the ulcers may give information on
after a primary infection, producing frequently recurring lo- the underlying mechanisms of viral spread within the epithe-
calized infections during the host’s lifetinjd]. The reacti- lial tissue. For instance, a theory based only on the neurot-
vation of HSV from latency may occur at any time and it is ropism of HSV and the dendriticlike distribution of nerve
characterized by active viral replication in the epitheliumterminals can explain the branching pattern observed in den-
causing vesicular eruptions in human mucosae and skin. Thdritic ulcers[4], but it fails to explain the decrease of the
rupture of these vesicles and the consequent cell necrosigactal dimensior(perimeter irregularitywith increasing ul-
leave the characteristic herpetic lesion or ulcer. cer sizes. An alternative explanation put forward by Landini

Basically, there are two distinct types of herpes simplexet al.[2], which will be the main focus of this paper, consid-
virus, namely, HSV Type | and HSV Type II. The former ers the ulcer shape as the natural outcome of the contiguous
generally involves infection above the waisicular and fa- spread of viral particles modulated by variations in the cell
cial) while the latter infects tissues below the waist. Here wesusceptibilities to infection. To take into account the fact that
discuss a mathematical model proposed to describe théruses only infect cells that have appropriate receptor mol-
growth of corneal ulcers caused by HSV Typé2l. This ecules on their surface, those authors proposed a cellular
infection is common and frequently causes corneal opacifiautomaton model for the HSV | spread in which the corneal
cation. Traditionally the morphology of the corneal ulcersepithelial tissue is modeled by a two-dimensional lattice. In
has been described as either dendritic or amoeboid. The detheir model, each lattice site may be occupied either by a
dritic ulcers are by far the more frequent form and, thoughpermissive cell(with probability q) or by a resistant cell
they are self-limited in general, occasionally they can enlargéwith probability 1—q). More pointedly, a permissive cell
progressively changing to the amoeboid form. This is actubecomes infected whenever there is at least one infected cell
ally the natural course of the infection in the case of immu-in its neighborhood, while a resistant cell becomes infected if
nocompromised hosts or of inappropriate use of topic cortithe number of infected and dead neighboring cells is larger
costeroids. In general, the amoeboid ulcers have a prolongdtan or equal to the integer parameR¥1 that measures
clinical course when compared to the dendritic ones. Regardhe degree of resistance of the déll.
less of their morphology, the ulcers are epithelial lesions that The simulated ulcers obtained with the cellular automaton
extend through the basement membrane whose swollen egiave the same qualitative features of the clinical lesions and,
thelial borders contain active viral particles. in addition, for appropriate choices of the degree of resis-

In order to carry out a more quantitative study of the ulcertanceR a dramatic change on the morphology of the ulcers is
morphology, the fractal dimension of clinically diagnosedobserved as the initial concentration of permissive cells
HSV ulcers(including both dendritic and amoeboid forms increases beyond a certain vali®. This phenomenon was
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FIG. 1. Percolation probabilityl as a func-
tion of the initial density of permissive celtgfor
L=1001 and(left to right) R=2, 3, 4, 5, and
6.
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conjectured to be of &qualitatively similar nature as the (1) An infected cell dies in the next time step.

ordinary percolation phase transition. The main contribution (2) A healthy permissive cell becomes infected if at least
of this paper is to show, through the calculation of the dy-one of its neighboring cells is infected.

namic and static critical exponents, that in the cases where a (3) A healthy resistant cell becomes infected if at least
phase transition does occuR%5), the transition belongs R>1 of its neighboring cells are infected or dead.

indeed to the universality class of the ordinary percolation The neighborhood of a given cell consists of its first and
[5,6]. To carry out this analysis we use the so-called dynamigecond nearest neighbdidoore neighborhood The infec-
Monte Carlo method or spreading analygis8] whose idea  tjon and subsequent death of a resistant cell surround@l by

is to study the spreading of the infection starting from aq, more dead cells is justified by the lack of tissue support. In

configuration with a single infected cell on the center of .theaddition, this is necessary to prevent the occurrence of large

lattice. Clearly this technique is very well suited to our in- ulcers with small islands of resistant cells, which are not

vestigation since the_ characterlzatlpn of the spreadlng_ beh.a\(/)'bserved clinically{2]. The four-state automaton considered
ior of the infection is exactly the issue we address in this

paper allows transitions of one of the healthy states to the infected

The remainder of the paper is organized as follows. Fol—and dead states in a CYC“C manner. At each time step we
lowing Landini et al. [2], in Sec. Il we give the set of rules Perform a paraliel updating of all cell states.
that govern the evolution of the HSV | infection in a two- _FOr R<8 we are dealing with a variant of the so-called
dimensional square lattice and present the evidences for tfiffusion percolation process where the geometry changes
existence of a threshold phenomenon or phase transition fofid & dynamic process and the nature of the growth depends
R=5. In Sec. Ill we characterize this phase transition using®n the local environmerig]. For finite lattice sizes and open
the dynamic Monte Carlo method that allows the computaboundary conditions the above rules are repeated until either
tion of the critical dynamic exponents that describe quantitathere are no more cells to infect or an infected cell reaches
tively the spreading of the infection from a single infectedthe lattice boundary. These different modes of termination
cell. Finally, some concluding remarks are presented irgenerate dendriticself-limited) and amoeboidunrestricted
Sec. IV. ulcers, respectively. It is interesting to note that the ordinary
site percolation process is recovered R 8, since in this
Il. MODEL case a resistant cell can never become infected and so the
infection can propagate only through the permissive cells.
The cellular automaton model is defined in a square lat- To illustrate the dependence of the different termination
tice consisting of L+1)x(L+1) sites, where each site is modes, and hence ulcer forms, on the control param&ers
associated to a cell. Each cell is modeled by a four-statand g of the model we present in Fig. 1 the fraction of un-
automaton corresponding to the different states of this cellrestricted ulcers generated in 1000 runs. Each run corre-
healthy permissive, healthy resistant, infected and dead. Exsponds to a different initial configuration of the lattice.
cept for the central cell, the initial state of any cell in the Clearly, this fraction can be identified with the percolation
lattice is set either as permissive or resistant with probabiliprobability IT [5,6]. Rather interestingly, we have found that
tiesg and 1—q, respectively, so that there are no dead cellsghe results foR=6 are indistinguishable within the numeri-
at the outset. The infection spreads from the single centratal precision. Actually, this is expected since there is a pre-
infected cell and the ulcefi.e., the cluster of dead cells ferred direction for the propagation of the infection, namely,
grows according to the following deterministic rules. from the center to the lattice boundaries, and so only the
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o | FIG. 2. Percolation probabilityl as a func-
tion of the initial density of permissive celtsfor
04k R=5 and L=101(),401(A),701(V) and
1001(X).
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neighborhood facing the infection front matters to update theluring the time we follow the evolution the infection front

state of a healthy cell. Since the largest size of the error barsan never reach the lattice boundaries. This of course sets an

in this as well as in the next figure is twice the size of theupper limit to the time we can follow the viral spread and so,

symbols, they were omitted for the sake of clarity. Morefor instance, for lattices of size=4005 we let the infection

importantly, we have found that fé(t<4, the results become evolve up tot=2000. As usual, we concentrate on the time

independent of the lattice size already for 101. dependence of the following key quantitigd: (i) the aver-
However, forR=5 the dependence on the lattice size,age number of dead and infected ceil(s); (ii) the survival

illustrated in Fig. 2 forR=5, indicates the occurrence of an probability of the infectiorp(t); and(iii) the average mean-

atypical threshold phenomenon at a critical vatyein the  square distance over which the ulcer has spregt). For

limit L—oe. In fact, asq increases from 0—1 the percolation each timet we carry out 10 independent runs, henggt) is

probability IT vanishes forq<q., undergoes a discontinu- simply the fraction of runs for which there is at least one

ous transition to some valud=11.>0 atg=q, and then infected cell in the lattice at time At the transition point

increases monotonically towards 1. This transition is atypicalve expect that the measured quantities obey the following

in the sense thdil; is not equal to 1 abovg,, as in the case scaling lawd7]:

of the ordinary percolation transitid,6], which means that

in this regime there is a finite probability that the infection

does not percolate, i.e., a dendritic ulcer is formed. The rea- p(t)~t~2, 1)

son for that is due simply to the fact that the spreading pro-

cess starts from a single central cell so that if the infection

happens to percolate in a lattice of a given size then it is n(t)~t7, 2

certain to percolate in a smaller lattice too, i.&I{L;)

=II(L,) for L;<L,. In particular, [1(3)=1—(1—q)®

yields an upper bound téI(=). Of course, if the initial ré(t)~t?, €)

setting is such that there is an extensive number of infected . )

cells, sayaL with a<1, randomly distributed over the bot- Whered, », andz are dynamic exponents. Since the fractal

tom side of the lattice and periodic boundary conditions Orp|mens(|jondf of the ulcer at a given time is defined as

the lateral sides, then the usual resilif=1 is recovered N(t)~r"" we have

[10]. In fact, since the curves for different lattice sizes do not

cross, the standard finite size scaling analysis aiming at de-

termining bothq, and the spatial correlation length exponent dfzzz (4

v, for R=5 (see, e.g., Ref5]) fails spectacularly and so we z

have to resort to other means to estimate those quantities. N ] ] S
at the critical point. Note that this equation is different from

the one used in the studies of directed percolafs®e, e.g.,
Ref. [11]) because in the present case all runs generate an
We turn now to the analysis of the spreading behavior olulcer and so(t) as well as2(t) are averages taken over all

the viral infection starting from a single infected cell located runs.
in the center of a lattice of infinite size. Finite size effectsare In Figs. 3, 4, and 5 we present log-log plots of
absent because the lattice size is taken large enough so thg(t), n(t), andr?(t), respectively, as functions fin the

IIl. SPREADING ANALYSIS
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= FIG. 3. The log-log plot op(t) as a function
of t for R=5 and(top to bottom q=0.4, 0.395,
- 0.3947, 0.3945, 0.394, 0.393, and 0.39.

In(t)

vicinity of the critical point for R=5. The asymptotic which for larget behaves as
straight lines observed in these figures are the signature of
critical behavior while upward and downward deviations in-
dicate supercriticald>q;) and subcritical <q.) behav-
iors, respectively. We recall that in the subcritical regime
only dendritic ulcers are formed, while in the SUperCfitiC&'Wherea is a constant. Anak)gous expressions hold mt‘)
regime the formation of amoeboid ulcers is much more freandz(t). Hence plots of the local slopes as functions df 1/
quent (see Fig. 2 The data shown in Fig. 3 vyieldlc  allow the calculation of the critical exponents. Applying this
=0.3945+0.0002 where the error is estimated by determin-procedure for the critical curves we find the exponefits

ing two values ofg as close as possible to the critical point =0.0870+0.0001, »=1.5866+0.0007, and z=1.6843

for which upward and downward deviations can be observed+ 0.0003. The errors in the critical exponents are, as usual,
A precise estimate for the dynamic critical exponents is obthe statistical errors obtained by fitting the local slopes by
tained by considering the local slopes of the curves shown igraight lines in the largeregime. We expect, of course, that
the previous figures. For instance, the local slaif€) is  the (uncontrolled systematic errors are much larger than the

a
o(t)~o+ T (6)

defined by{11] statistical errors. Using Eq(4), we obtain d;=1.8840
+0.0005 which is in very good agreement with the analyti-
— ()= In[p(t)/p(t/8)] ®) cal prediction for the ordinary percolatioml;=91/48
Ing ~1.896[5,6].
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FIG. 4. Same as Fig. 3 but for(t).
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FIG. 5. Same as Fig. 3 but fof(t).
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As the dynamic exponents, », andz for the ordinary  only illustrates the adequacy of this assumption but permits
percolation problem are not very well known, to show un-also the evaluation of the decay constant
ambiguously that this ulcer formation model belongs to the
universality class of the ordinary percolation we ought to A=(gc.— )" (8)

estimate the static exponensand v, . We recall that the ) )

exponents gives a measure of how the fraction of lattice from the asymptotic slopes_of the curves irst. The results
cells belonging to an infinite cluster vanishes as the percola?resented in Fig. 7, showing the dependence\ oén the
tion thresholdg, is approached in the supercritical regime distanceqc—q from the critical point, allows the calculation
while v, is the correlation-length exponent in the space di-Of the exponeni as the slope of the straight line, yielding
rection. To do so we calculate first the exponepthat gov- ¥~ 1.54= 0.03. Once this exponent is known we can use the
erns the decay of the concentration of infected celiy in ~ scaling relationg3= 6 and v, =z /2 [7] to estimate the
the subcritical regime. In fact, since in this regime the cor-Static exponents. We fingg=0.134+0.003 andv, =1.30

relations are short ranged, one expecty to decay expo- +0.-03 that, within error bars, are in agreement with the exact
nentially [7] values of the corresponding exponents of the ordinary perco-

lation, namely,3=5/36~0.139 andv, = 4/3~1.333[5,6].
We have carried out a similar spreading analysis Ror
i(t)~A(q)exd —(q.—q)"lIt], t—o, (77 =6 and, as hinted in Fig. 1, we have found a slightly larger
percolation threshold, namelyg.=0.4075-0.0002 that,
whereA(q) is some time independent function. Figure 6 notwithin error bars, is shown to be independent of the value of

4 T I T I T I T T

FIG. 6. The log-linear plot off(t) against for
R=5 and (top to bottom gq.—q=0.009, 0.011,
. 0.014, 0.016, 0.019, 0.021, 0.024, 0.027, 0.029,
and 0.034.

In(i)
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R=6. Furthermore, since the larger the resistance parametprobability curves for different lattice sizes do not crésse
R, the more similar the ulcer formation problem is to the Fig. 2), which complicates enormously the estimate of the
ordinary site percolation, we have found the same dynamigercolation threshold and critical exponents through the stan-
and static critical exponents as for the cd®e5, as ex- dard finite size scaling method.
pected. Some remarks on the biological interpretation of our re-
sults are in order. According to the specialized literature
[1-4], amoeboid ulcers are, in general, observed in immuno-
compromised patients or in patients that made inappropriate
Using the dynamic Monte Carlo method we have shownuse of corticosteroids. In the present model, these conditions
unambiguously that the phase transition observed in thevould correspond to a decrease of the degree of resisRnce
model for formation of herpes simplex ulcers proposed byof the resistant cells or to an increase of the initial concen-
Landini et al. [2] belongs to the universality class of the tration g of permissive cells. Although this model does not
ordinary percolation. The value of this finding should not betake into account the recurrent characteristic of this kind of
under-rated since the infection process actually resemblesiafection, in which case the variability af would probably
diffusion percolation process where the growth depends oplay an important role, nor the possibility of variation Rf
the local environment, in the sense that the decision omluring the course of the infection, its predictions are in quali-
whether or not a resistant cell will become infected dependsative agreement with the clinical observations. In fact, Fig. 1
on the time-dependent states of several of its neighbors. Fupoints out the prevalence of amoeboid ulcers wikede-
thermore, since the ulcer formation model described herereases or increases. This agreement lends support to the
may be thought of as a damage spreading process, one colgpothesis that the morphology of the ulcers is determined
expect that the transition were in the universality class of théyy the viral spreading through cells with different suscepti-
(2+1) directed percolation instead. However, as pointed oubilities to infection.
by Grassbergefr12], this is not so because in the ulcer for-  To conclude we should mention that an extension of the
mation model the damage never heésen if it does not original model proposed by Landiei al. in which both the
spread, i.e., the probability that an infected or dead cell be-regeneration of dead cells as well as the spontaneous out-
comes healthy is zero. break of infection anywhere in the lattice are taken into ac-
The finding that forR<5 the model does not present a count has already been considered in the literatligg In-
phase transition reflects the nontrivial role played by the reterestingly, in this case the viral spreading model becomes
sistance parameteR in this percolation process. In these very similar to the critical forest fire model with immune
noncritical cases the probability that an infinite or unre-trees[16,17. In particular, the resistance parame®eof the
stricted ulcer is generated is given by the smooth sizeulcer formation model is akin to the immunity probability,
independent curves shown in Fig. 1. Similar to a noncriticali.e., the probability that a tree is not ignited though one of its
forest fire model[13,14 the growing of this type of ulcer neighbors is burning. According to a conjecture put forward
may be characterized by infection fronts with fractal dimen-by Grassbergef12], the extended ulcer formation model
sion D whose value probably depends on the resistance pahould be in the universality class of directed percolation,
rameterR (of course D=1 for R=1). An additional feature since it allows for the regeneration of dead cells. This sug-
that makes the quantitative study of this viral spreadinggestion is strengthened by the finding that the forest fire
model rather challenging is the result that the percolatiormodel with immune trees is in that class of universdlity].

IV. CONCLUSION
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