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Phase transitions in a model for the formation of herpes simplex ulcers
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The critical properties of a cellular automaton model describing the spreading of infection of the herpes
simplex virus in corneal tissue are investigated through the dynamic Monte Carlo method. The model takes
into account different cell susceptibilities to the viral infection, as suggested by experimental findings. In a
two-dimensional square lattice the sites are associated with two distinct types of cells, namely, permissive and
resistant to the infection. While a permissive cell becomes infected in the presence of a single infected cell in
its neighborhood, a resistant cell needs to be surrounded by at leastR.1 infected or dead cells in order to
become infected. The infection is followed by the death of the cells resulting in ulcers whose forms may be
dendritic~self-limited clusters! or amoeboid~percolating clusters! depending on the degree of resistanceR of
the resistant cells as well as on the density of permissive cells in the healthy tissue. We show that a phase
transition between these two regimes occurs only forR>5 and, in addition, that the phase transition is in the
universality class of the ordinary percolation.

DOI: 10.1103/PhysRevE.64.041903 PACS number~s!: 87.10.1e, 64.60.Ak, 87.18.Bb, 64.60.Ht
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I. INTRODUCTION

One of the most common and intensively studied disea
among humans is the herpes simplex virus~HSV! infection.
Apparently, the unique symbiosis that exists in nature
tween humans and the HSV allows the viral particles to
main inactive~latent infection! in the cranial nerve ganglia
after a primary infection, producing frequently recurring l
calized infections during the host’s lifetime@1#. The reacti-
vation of HSV from latency may occur at any time and it
characterized by active viral replication in the epitheliu
causing vesicular eruptions in human mucosae and skin.
rupture of these vesicles and the consequent cell nec
leave the characteristic herpetic lesion or ulcer.

Basically, there are two distinct types of herpes simp
virus, namely, HSV Type I and HSV Type II. The forme
generally involves infection above the waist~ocular and fa-
cial! while the latter infects tissues below the waist. Here
discuss a mathematical model proposed to describe
growth of corneal ulcers caused by HSV Type I@2#. This
infection is common and frequently causes corneal opa
cation. Traditionally the morphology of the corneal ulce
has been described as either dendritic or amoeboid. The
dritic ulcers are by far the more frequent form and, thou
they are self-limited in general, occasionally they can enla
progressively changing to the amoeboid form. This is ac
ally the natural course of the infection in the case of imm
nocompromised hosts or of inappropriate use of topic co
costeroids. In general, the amoeboid ulcers have a prolon
clinical course when compared to the dendritic ones. Reg
less of their morphology, the ulcers are epithelial lesions t
extend through the basement membrane whose swollen
thelial borders contain active viral particles.

In order to carry out a more quantitative study of the ulc
morphology, the fractal dimension of clinically diagnos
HSV ulcers~including both dendritic and amoeboid form!
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have been estimated suggesting that their outlines are fra
objects@3#. While the dendritic ulcers include branching an
linear lesions, the geographic ulcers are no longer linear
as they increase in size, their perimeters become less and
irregular. In addition to its usefulness as a classification to
the fractal properties of the ulcers may give information
the underlying mechanisms of viral spread within the epit
lial tissue. For instance, a theory based only on the neu
ropism of HSV and the dendriticlike distribution of nerv
terminals can explain the branching pattern observed in d
dritic ulcers @4#, but it fails to explain the decrease of th
fractal dimension~perimeter irregularity! with increasing ul-
cer sizes. An alternative explanation put forward by Land
et al. @2#, which will be the main focus of this paper, consi
ers the ulcer shape as the natural outcome of the contigu
spread of viral particles modulated by variations in the c
susceptibilities to infection. To take into account the fact th
viruses only infect cells that have appropriate receptor m
ecules on their surface, those authors proposed a cel
automaton model for the HSV I spread in which the corn
epithelial tissue is modeled by a two-dimensional lattice.
their model, each lattice site may be occupied either b
permissive cell~with probability q) or by a resistant cell
~with probability 12q). More pointedly, a permissive ce
becomes infected whenever there is at least one infected
in its neighborhood, while a resistant cell becomes infecte
the number of infected and dead neighboring cells is lar
than or equal to the integer parameterR.1 that measures
the degree of resistance of the cell@2#.

The simulated ulcers obtained with the cellular automa
have the same qualitative features of the clinical lesions a
in addition, for appropriate choices of the degree of res
tanceR a dramatic change on the morphology of the ulcers
observed as the initial concentration of permissive cellq
increases beyond a certain value@2#. This phenomenon was
©2001 The American Physical Society03-1
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FIG. 1. Percolation probabilityP as a func-
tion of the initial density of permissive cellsq for
L51001 and~left to right! R52, 3, 4, 5, and
6.
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conjectured to be of a~qualitatively! similar nature as the
ordinary percolation phase transition. The main contribut
of this paper is to show, through the calculation of the d
namic and static critical exponents, that in the cases whe
phase transition does occur (R>5), the transition belongs
indeed to the universality class of the ordinary percolat
@5,6#. To carry out this analysis we use the so-called dyna
Monte Carlo method or spreading analysis@7,8# whose idea
is to study the spreading of the infection starting from
configuration with a single infected cell on the center of t
lattice. Clearly this technique is very well suited to our i
vestigation since the characterization of the spreading be
ior of the infection is exactly the issue we address in t
paper.

The remainder of the paper is organized as follows. F
lowing Landini et al. @2#, in Sec. II we give the set of rule
that govern the evolution of the HSV I infection in a two
dimensional square lattice and present the evidences fo
existence of a threshold phenomenon or phase transition
R>5. In Sec. III we characterize this phase transition us
the dynamic Monte Carlo method that allows the compu
tion of the critical dynamic exponents that describe quant
tively the spreading of the infection from a single infect
cell. Finally, some concluding remarks are presented
Sec. IV.

II. MODEL

The cellular automaton model is defined in a square
tice consisting of (L11)3(L11) sites, where each site i
associated to a cell. Each cell is modeled by a four-s
automaton corresponding to the different states of this c
healthy permissive, healthy resistant, infected and dead.
cept for the central cell, the initial state of any cell in th
lattice is set either as permissive or resistant with probab
ties q and 12q, respectively, so that there are no dead ce
at the outset. The infection spreads from the single cen
infected cell and the ulcer~i.e., the cluster of dead cells!
grows according to the following deterministic rules@2#.
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~1! An infected cell dies in the next time step.
~2! A healthy permissive cell becomes infected if at lea

one of its neighboring cells is infected.
~3! A healthy resistant cell becomes infected if at lea

R.1 of its neighboring cells are infected or dead.
The neighborhood of a given cell consists of its first a

second nearest neighbors~Moore neighborhood!. The infec-
tion and subsequent death of a resistant cell surroundedR
or more dead cells is justified by the lack of tissue support
addition, this is necessary to prevent the occurrence of la
ulcers with small islands of resistant cells, which are n
observed clinically@2#. The four-state automaton considere
allows transitions of one of the healthy states to the infec
and dead states in a cyclic manner. At each time step
perform a parallel updating of all cell states.

For R<8 we are dealing with a variant of the so-calle
diffusion percolation process where the geometry chan
via a dynamic process and the nature of the growth depe
on the local environment@9#. For finite lattice sizes and ope
boundary conditions the above rules are repeated until ei
there are no more cells to infect or an infected cell reac
the lattice boundary. These different modes of terminat
generate dendritic~self-limited! and amoeboid~unrestricted!
ulcers, respectively. It is interesting to note that the ordin
site percolation process is recovered forR.8, since in this
case a resistant cell can never become infected and so
infection can propagate only through the permissive cells

To illustrate the dependence of the different terminat
modes, and hence ulcer forms, on the control parameteR
andq of the model we present in Fig. 1 the fraction of u
restricted ulcers generated in 1000 runs. Each run co
sponds to a different initial configuration of the lattic
Clearly, this fraction can be identified with the percolatio
probabilityP @5,6#. Rather interestingly, we have found th
the results forR>6 are indistinguishable within the numer
cal precision. Actually, this is expected since there is a p
ferred direction for the propagation of the infection, name
from the center to the lattice boundaries, and so only
3-2
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FIG. 2. Percolation probabilityP as a func-
tion of the initial density of permissive cellsq for
R55 and L5101(s),401(n),701(,) and
1001(3).
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neighborhood facing the infection front matters to update
state of a healthy cell. Since the largest size of the error b
in this as well as in the next figure is twice the size of t
symbols, they were omitted for the sake of clarity. Mo
importantly, we have found that forR<4, the results become
independent of the lattice size already forL>101.

However, for R>5 the dependence on the lattice siz
illustrated in Fig. 2 forR55, indicates the occurrence of a
atypical threshold phenomenon at a critical valueqc in the
limit L→`. In fact, asq increases from 0–1 the percolatio
probability P vanishes forq,qc , undergoes a discontinu
ous transition to some valueP5Pc.0 at q5qc and then
increases monotonically towards 1. This transition is atyp
in the sense thatPc is not equal to 1 aboveqc , as in the case
of the ordinary percolation transition@5,6#, which means that
in this regime there is a finite probability that the infectio
does not percolate, i.e., a dendritic ulcer is formed. The r
son for that is due simply to the fact that the spreading p
cess starts from a single central cell so that if the infect
happens to percolate in a lattice of a given size then i
certain to percolate in a smaller lattice too, i.e.,P(L1)
>P(L2) for L1,L2. In particular, P(3)512(12q)8

yields an upper bound toP(`). Of course, if the initial
setting is such that there is an extensive number of infec
cells, sayaL with a,1, randomly distributed over the bo
tom side of the lattice and periodic boundary conditions
the lateral sides, then the usual resultPc51 is recovered
@10#. In fact, since the curves for different lattice sizes do n
cross, the standard finite size scaling analysis aiming at
termining bothqc and the spatial correlation length expone
n' for R>5 ~see, e.g., Ref.@5#! fails spectacularly and so w
have to resort to other means to estimate those quantitie

III. SPREADING ANALYSIS

We turn now to the analysis of the spreading behavior
the viral infection starting from a single infected cell locat
in the center of a lattice of infinite size. Finite size effects a
absent because the lattice size is taken large enough so
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during the time we follow the evolution the infection fron
can never reach the lattice boundaries. This of course se
upper limit to the time we can follow the viral spread and s
for instance, for lattices of sizeL54005 we let the infection
evolve up tot52000. As usual, we concentrate on the tim
dependence of the following key quantities@7#: ~i! the aver-
age number of dead and infected cellsn(t); ~ii ! the survival
probability of the infectionp(t); and~iii ! the average mean
square distance over which the ulcer has spreadr 2(t). For
each timet we carry out 104 independent runs, hencep(t) is
simply the fraction of runs for which there is at least o
infected cell in the lattice at timet. At the transition pointqc
we expect that the measured quantities obey the follow
scaling laws@7#:

p~ t !;t2d, ~1!

n~ t !;th, ~2!

r 2~ t !;tz, ~3!

whered, h, andz are dynamic exponents. Since the frac
dimensiondf of the ulcer at a given timet is defined as
n(t);r df we have

df52
h

z
~4!

at the critical point. Note that this equation is different fro
the one used in the studies of directed percolation~see, e.g.,
Ref. @11#! because in the present case all runs generate
ulcer and son(t) as well asr 2(t) are averages taken over a
runs.

In Figs. 3, 4, and 5 we present log-log plots
p(t), n(t), and r 2(t), respectively, as functions oft in the
3-3
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FIG. 3. The log-log plot ofp(t) as a function
of t for R55 and~top to bottom! q50.4, 0.395,
0.3947, 0.3945, 0.394, 0.393, and 0.39.
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vicinity of the critical point for R55. The asymptotic
straight lines observed in these figures are the signatur
critical behavior while upward and downward deviations
dicate supercritical (q.qc) and subcritical (q,qc) behav-
iors, respectively. We recall that in the subcritical regim
only dendritic ulcers are formed, while in the supercritic
regime the formation of amoeboid ulcers is much more f
quent ~see Fig. 2!. The data shown in Fig. 3 yieldqc
50.394560.0002 where the error is estimated by determ
ing two values ofq as close as possible to the critical poi
for which upward and downward deviations can be observ
A precise estimate for the dynamic critical exponents is
tained by considering the local slopes of the curves show
the previous figures. For instance, the local sloped(t) is
defined by@11#

2d~ t !5
ln@p~ t !/p~ t/8!#

ln 8
, ~5!
04190
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which for larget behaves as

d~ t !;d1
a

t
, ~6!

wherea is a constant. Analogous expressions hold forh(t)
andz(t). Hence plots of the local slopes as functions oft
allow the calculation of the critical exponents. Applying th
procedure for the critical curves we find the exponentsd
50.087060.0001, h51.586660.0007, and z51.6843
60.0003. The errors in the critical exponents are, as us
the statistical errors obtained by fitting the local slopes
straight lines in the larget regime. We expect, of course, tha
the ~uncontrolled! systematic errors are much larger than t
statistical errors. Using Eq.~4!, we obtain df51.8840
60.0005 which is in very good agreement with the analy
cal prediction for the ordinary percolationdf591/48
'1.896@5,6#.
FIG. 4. Same as Fig. 3 but forn(t).
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FIG. 5. Same as Fig. 3 but forr 2(t).
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As the dynamic exponentsd, h, and z for the ordinary
percolation problem are not very well known, to show u
ambiguously that this ulcer formation model belongs to
universality class of the ordinary percolation we ought
estimate the static exponentsb and n' . We recall that the
exponentb gives a measure of how the fraction of lattic
cells belonging to an infinite cluster vanishes as the perc
tion thresholdqc is approached in the supercritical regim
while n' is the correlation-length exponent in the space
rection. To do so we calculate first the exponentn i that gov-
erns the decay of the concentration of infected cellsi (t) in
the subcritical regime. In fact, since in this regime the c
relations are short ranged, one expectsi (t) to decay expo-
nentially @7#

i ~ t !'A~q!exp@2~qc2q!n it#, t→`, ~7!

whereA(q) is some time independent function. Figure 6 n
04190
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only illustrates the adequacy of this assumption but perm
also the evaluation of the decay constant

l5~qc2q!n i ~8!

from the asymptotic slopes of the curves lni vs t. The results
presented in Fig. 7, showing the dependence ofl on the
distanceqc2q from the critical point, allows the calculation
of the exponentn i as the slope of the straight line, yieldin
n i51.5460.03. Once this exponent is known we can use
scaling relationsb5n id andn'5zn i /2 @7# to estimate the
static exponents. We findb50.13460.003 andn'51.30
60.03 that, within error bars, are in agreement with the ex
values of the corresponding exponents of the ordinary pe
lation, namely,b55/36'0.139 andn'54/3'1.333@5,6#.

We have carried out a similar spreading analysis forR
>6 and, as hinted in Fig. 1, we have found a slightly larg
percolation threshold, namely,qc50.407560.0002 that,
within error bars, is shown to be independent of the value
9,
FIG. 6. The log-linear plot ofi (t) againstt for
R55 and ~top to bottom! qc2q50.009, 0.011,
0.014, 0.016, 0.019, 0.021, 0.024, 0.027, 0.02
and 0.034.
3-5
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FIG. 7. The log-log plot of the time deca
constantl againstqc2q for R55. The slope of
the straight line yieldsn i'1.5460.03.
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R>6. Furthermore, since the larger the resistance param
R, the more similar the ulcer formation problem is to t
ordinary site percolation, we have found the same dyna
and static critical exponents as for the caseR55, as ex-
pected.

IV. CONCLUSION

Using the dynamic Monte Carlo method we have sho
unambiguously that the phase transition observed in
model for formation of herpes simplex ulcers proposed
Landini et al. @2# belongs to the universality class of th
ordinary percolation. The value of this finding should not
under-rated since the infection process actually resembl
diffusion percolation process where the growth depends
the local environment, in the sense that the decision
whether or not a resistant cell will become infected depe
on the time-dependent states of several of its neighbors.
thermore, since the ulcer formation model described h
may be thought of as a damage spreading process, one c
expect that the transition were in the universality class of
(211) directed percolation instead. However, as pointed
by Grassberger@12#, this is not so because in the ulcer fo
mation model the damage never heals~even if it does not
spread!, i.e., the probability that an infected or dead cell b
comes healthy is zero.

The finding that forR,5 the model does not present
phase transition reflects the nontrivial role played by the
sistance parameterR in this percolation process. In thes
noncritical cases the probability that an infinite or un
stricted ulcer is generated is given by the smooth s
independent curves shown in Fig. 1. Similar to a noncriti
forest fire model@13,14# the growing of this type of ulcer
may be characterized by infection fronts with fractal dime
sion D whose value probably depends on the resistance
rameterR ~of course,D51 for R51). An additional feature
that makes the quantitative study of this viral spread
model rather challenging is the result that the percolat
04190
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probability curves for different lattice sizes do not cross~see
Fig. 2!, which complicates enormously the estimate of t
percolation threshold and critical exponents through the s
dard finite size scaling method.

Some remarks on the biological interpretation of our
sults are in order. According to the specialized literatu
@1–4#, amoeboid ulcers are, in general, observed in immu
compromised patients or in patients that made inappropr
use of corticosteroids. In the present model, these condit
would correspond to a decrease of the degree of resistanR
of the resistant cells or to an increase of the initial conc
tration q of permissive cells. Although this model does n
take into account the recurrent characteristic of this kind
infection, in which case the variability ofq would probably
play an important role, nor the possibility of variation ofR
during the course of the infection, its predictions are in qua
tative agreement with the clinical observations. In fact, Fig
points out the prevalence of amoeboid ulcers whenR de-
creases orq increases. This agreement lends support to
hypothesis that the morphology of the ulcers is determin
by the viral spreading through cells with different suscep
bilities to infection.

To conclude we should mention that an extension of
original model proposed by Landiniet al. in which both the
regeneration of dead cells as well as the spontaneous
break of infection anywhere in the lattice are taken into
count has already been considered in the literature@15#. In-
terestingly, in this case the viral spreading model becom
very similar to the critical forest fire model with immun
trees@16,17#. In particular, the resistance parameterR of the
ulcer formation model is akin to the immunity probability
i.e., the probability that a tree is not ignited though one of
neighbors is burning. According to a conjecture put forwa
by Grassberger@12#, the extended ulcer formation mode
should be in the universality class of directed percolati
since it allows for the regeneration of dead cells. This s
gestion is strengthened by the finding that the forest
model with immune trees is in that class of universality@17#.
3-6
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